Skip to main content

Core Installation

1

Clone the repository

git clone <repository-url>
cd mle_expert_coding
2

Install core dependencies

pip install -r requirements.txt
3

Configure API keys

Create .env in project root:
# Required
OPENAI_API_KEY=your-openai-api-key
GOOGLE_API_KEY=your-google-api-key

# Optional
ANTHROPIC_API_KEY=your-anthropic-api-key

Benchmark Installation

MLE-Bench provides Kaggle competition problems.Prerequisites:
  • Git LFS (sudo apt-get install git-lfs or brew install git-lfs)
Installation:
# Clone and install MLE-Bench
git clone https://github.com/openai/mle-bench.git
cd mle-bench
git lfs install
git lfs fetch --all
git lfs pull
pip install -e .
cd ..

# Install MLE-specific dependencies
pip install -r benchmarks/mle/requirements.txt
Verify:
PYTHONPATH=. python -m benchmarks.mle.runner --list
The knowledge search provides ML domain expertise using semantic search (Weaviate) and graph structure (Neo4j).

Environment Variables

VariableRequiredDefaultDescription
OPENAI_API_KEYYes-OpenAI API key (also for embeddings)
GOOGLE_API_KEYYes-Google API key for Gemini
ANTHROPIC_API_KEYNo-Anthropic API key for Claude
CUDA_DEVICENo0GPU device for ML training
NEO4J_URINobolt://localhost:7687Neo4j connection URI
NEO4J_USERNoneo4jNeo4j username
NEO4J_PASSWORDNopasswordNeo4j password
WEAVIATE_URLNohttp://localhost:8081Weaviate server URL

Verify Installation

# Check core installation
python -c "from src.execution.orchestrator import OrchestratorAgent; print('Core OK')"

# Check MLE-Bench
python -c "import mlebench; print('MLE-Bench OK')"

# Check ALE-Bench
python -c "import ale_bench; print('ALE-Bench OK')"

# Check Neo4j
python -c "from neo4j import GraphDatabase; print('Neo4j driver OK')"

# Check Weaviate
python -c "import weaviate; print('Weaviate client OK')"

# Check Knowledge Search
python -c "from src.knowledge.search import KGGraphSearch; print('Knowledge Search OK')"