Core Installation
1
Clone the repository
2
Install core dependencies
3
Configure API keys
Create
.env in project root:Benchmark Installation
- MLE-Bench
- ALE-Bench
MLE-Bench provides Kaggle competition problems.Prerequisites:Verify:
- Git LFS (
sudo apt-get install git-lfsorbrew install git-lfs)
Optional: Knowledge Search
The knowledge search provides ML domain expertise using semantic search (Weaviate) and graph structure (Neo4j).- KG Graph Search (Recommended)
Uses Weaviate for embeddings + Neo4j for graph connections.
1
Start Weaviate
2
Start Neo4j
3
Configure connection
Add to
.env:4
Index wiki pages
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
OPENAI_API_KEY | Yes | - | OpenAI API key (also for embeddings) |
GOOGLE_API_KEY | Yes | - | Google API key for Gemini |
ANTHROPIC_API_KEY | No | - | Anthropic API key for Claude |
CUDA_DEVICE | No | 0 | GPU device for ML training |
NEO4J_URI | No | bolt://localhost:7687 | Neo4j connection URI |
NEO4J_USER | No | neo4j | Neo4j username |
NEO4J_PASSWORD | No | password | Neo4j password |
WEAVIATE_URL | No | http://localhost:8081 | Weaviate server URL |